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A computational method is presented which describes the un-
steady two-dimensional vortex generation and convection in sta-
tionary geometries with sharp edges. A second-arder panel method
is used to describe the motion of the two-dimensional vortex sheet,
while the generation of vorticity at the sharp edges is enforced
through a Kutta condition. In order to easily satisfy the normal-
velocity boundary condition on the stationary walls, the flow domain
is transformed to a half-plane {x > 0) by a Schwarz-Christoffel
conformal mapping. In the computational plane the solid walls are
situated on the vertical coordinate axis so that image vorticity can
be utitized to satisfy the boundary condition in a simple way. The
methad is applied to describe the separating impulsively started
flow past a sharp-edged wedge and the flow in a channel with a
deep cavity. These applications show that the method is able to
describe vortex shedding in complex geometries in an accurate
way. © 1995 Academic Press, Inc.

1. INTRODUCTION

The problem of the generation and convection of free shear
layers has been studied since (he beginning of this century. For
high Reynokds numbers, free shear Tayers can be madeled by
intinitesimally thin vortex sheets, representing the vorticity, and
a potential flow elsewhere. The study of the Kelvin—Helmholtz
instability of a straight vortex sheet of uniform strength by

Rosenhead [ 1} was the first attempt to describe the motion of

a vortex layer numerically, employing a method in which the
contintous vortex sheet is represented by a number ol discrete
vartices. Other tlow problems where discrete vorlex madels
have been used are the rolling-up of the vortex sheet behind an
clliptically loaded wing. a delta wing, oraring wing. Although a
discrete vortex approach is nol a very accurate description of
a continuous vortex sheet, the model is still widely used in the
literature because of ils simplicity.

One of the problems of the point vortex methed is that for
a starting flow the method is not stable in the limit of the
nunber of vortices going to infinity. The velocity induced by
a point vortex of fixed circulation representing a portion of the
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vortex sheet tends to infinity when the distance to the vortex
goes to zero and as a result the motion of a number of point
vortices in close proximity inevitably leads to chaotic maotion
[2]. A number of methods have been proposed to solve this
problem. The vortex blob method [3, 4] has proven to be most
successful. In the vortex blob method the vorticity is not limited
to a single point, but distributed in a small area around the
centre of vorticity of the vortex blob. A densely packed row
of these vortex blobs therefore describes a vortex layer of finite
thickness. As a result the assumption of potential flow in the
region outside the vortex sheet is lost in the region of the
vortex layer. A number of reviews of the various discrete vortex
methods used to describe the two-dimensional motion of vortex
sheets can be found in the literatare [5-10). .

An alternative method to describe the vortex sheet miore
accurately has been proposed by Mokry and Rainbird [1]]. In
this method, the vortex sheet is described by a number of
straight segments (so-called panels), with a panelwise uniforin
vortex distribution leading to a first-order accurate discretisa-
tion. Hocijmakers and Vaatstra {12] developed a second-order
accurate panct method in which the voitex sheet s describeid
by a number of curved panels, carrying a piccewise linear
vortex distribution. The method has been applied with success
to describe the evolution of the free vortex sheet behind an
clliptically loaded wing, the flow behind a ring wing, and a
delfta wing {12, 13}

These methods describe the motion of a vortex sheet after
it has been generated and, furthenmore, assume the absence of
solid surfaces, which implies that the total vorticity contained
in the vortex system is constant. In the present study the objec-
tive is to develop a method in which the walls and the generation
of vorticity at sharp edges is incorporated so that the circulation
can vary with time, Generation of vorticity has been achieved
by imposing a so-called Kutta condition at the sharp edge. The
implementation of the normal-veloeity boundary condition at
the solid walls has been accomplished employing a conformal
mapping of the flow domain to a half-plane in which the selid
wall is mapped onto an infinite straight wall and mirror-imaging
can be applied to satisfy the boundary condition.

In Section 2 the computational method will be described,
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where the application of the conformal mapping technique and
the Kutta condition will be highlighted. In Section 3 two exam-
ples of the application of the method will be presented, the
self-similar starting flow past an infinite wedge and the starting
flow in a channel with a sharp-edged T-junction. The results
will be compared with results of flow visualisation of the start-
ing flow in a T-junction.

2. DESCRIPTION OF THE METHOD

2.1. Vortex Sheet Method

A detailed description of the second-order panel method
describing the motion of the vortex sheet is given by Hoeijmak-
ers and Vaatstra [12, 13). In the vortex-sheet method the sheet
is divided into a number of continuous segments (so-called
panels), and the velocity field induced by the vortex sheet is
evaluated as the sum of the contribution of all panels. The
contribution of each panel to the velocity field is computed to
a desired order of approximation. if the coordinates of the
points on the vortex sheet are given by z(s) = x(s) + iv(s),
where 5 is the arc length parameter along the vortex sheet and
the vortex distribution on the vortex sheet is given by v(s),
then z(s) and y(s) are described by piecewise polynomial repre-
sentations, where the accuracy of the method is determined by
the specific combinations of the degree of the polynomial cho-
sen for z(s) and y(s). The method is an extension of the first-
order panel method, in which the panels are straight segments,
with a panel-wise constant vortex distribution [11]. In the pres-
ent second-order method the segments are curved and carry a
linearly varying vortex distribution. In complex notation, the
velocity v = u, + iu, induced at a point z; by a vortex sheet
is given by

1 f
V() = 5 j T, m

8

where a star denotes a complex conjugate, ['(s) is the dipole
strength (local circulation) of the vortex sheet which is related
to the vortex distribution through dI'/ds = —v(s), and s, and
5. are the first and last points of the sheet, respectively. For a
point 7y close to the point z(s)) on the sheet, the velocity is
given by

ool d
VR0 = 300 o (50

Lf 1 _

Ut ©

o

where the integral F denotes the Cauchy principal value of the
integral and *+ denotes the left- and right-hand sides of the
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tangent at z(s")

FIG. 1.
method.

The small curvature expansion used in the second-order panel

sheet when moving along the curve in the direction of increasing
arc length, respectively. Furthermore dz(s)/ds is the unit tangen-
tial vector along the sheet. The jump of tangential velocity
across the sheet is

Vlatsn)) = vlals)®) = V59 o (v ®)

the normal component of the velocity is continuous across the
vortex sheet. On each panel, the dipole distribution and the
geometry are expressed as

I(s) = T(s) + (s — 5f) v (s/)
ds
1 LdT
+ 2 (s —s7) e (s)) + O(As?) (4)

d
2s) = 28}y + (s — 5) d—i (s))

d?z
ds?

2= 5 R - 0, ()
where s is the expansion point, chosen to be the midpoint of
the panel and As; = s;;, — s; is the panel size in terms of the
arc length. The velocity is to be calculated everywhere in the
flow field, including at points situated on the vortex sheet. For
the latter care must be taken to properly handle the singular
character of the integrand in Eq. (2). Therefore a small curvature
expansion of the integrand is used, in which R{s) = z, — z(s5}
is approximated by the distance to the tangent of the panel at
the expansion point plus a second-order term (see Fig. 1),

2
R(s) = Ri(s) — 3(s — 57)* % (s7) + O(As]) (6)
with

RAS) = 20— 2067 — s = ) = 5.
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Substitution of this approximation into Eq. (1) gives the induced
velocity in a second-order accurate approximation,

ww—EFg@%H+%@m)

i=1

+4T (s;)Eg] + 0(83),
ds
(7)

where &, is a measure of the average size of the panels on the
sheet and the sum is taken over all panels NP. The second
derivative of the coordinate z(s) is related to the curvature k,(s)
of the sheet according to d*z(s)/ds® = ik,(s) dz{(s)/ds, since the
curvature is defined as

dz'(s) d%z(s)
fls) = 3 [ds ds* ]

where 3( ) denotes the imaginary part. Furthermore
El, EY, and £ are given by

5l
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The integrands in Egs. (8) can be expressed in closed form in
a similar fashion as given by Hoeijmakers [13], i.e.,

. -1 n (Rf(%ﬂ))
* 2mide/ds)s) T\ Ri(s)
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(dz/ds)(s]) \R(s:01)  Re(s)

20— z(s) (Rf(b‘jﬂ)):l
+ (dz/ds)(s}) tn Res) / I

with R(s;+1) = z, — z(s)) — $As,(dz/ds) (s}) and R(s)) = 29 —
ads?) + 3As;(dz/ds)(s)).

The velocity induced at a point on the vortex sheet is mainly
due to the velocity induced by the panel on which the point is
situated. The velocity induced by a panel at its own midpoint
can be derived from Egs. (73—(9) as

A
£ = 2mi(de/ds)(s?) {Asf

rotational core feeding sheet
vortex
voriek sheet

(2) (6} ()

FIG. 2. Different core representations used to describe a strongly rolled-
up vortex sheet: (a) rolled-up vortex sheet for Re — so; (b) finite core method;
{c) point vortex/feeding sheet method.

b}(zts)

— __ILQ * : L QIE A A d21" s

= [ i (s7)ysign () + i As; s (s k.(s]) — T 7 (j)]
L. ao

where sign (£} = *1 on the left- and right-hand sides of the
sheet when progressing along the sheet in positive s-direction,
respectively. The tangential component of the velocity induced
by the panel at its own midpoint experiences a jump across the
panel of magnitude <y(s}), while the mean tangential velocity
is non-zero if the panel has non-zero curvature. If the vortex
distribution -y{s) varies along the panel, also a mean normal
velocity is induced at the panel midpoint. For a first-order panel
method the last two terms are not present, since the panel
curvature is not accounted for (i.e., k,(s;) = 0} and the vortex
distribution is constant (i.e., (d°T/ds*)(s}) = 0).

For puints z; in the far field of a panel j, the expression for
the velocity induced by the panel can be simplified. From Eq.
(1) it follows that, consistent with the order of approximation
considered, the velocity induced by panel j at points g, {ar away

from z(s}},
pr(zg) = o 25 fdT .
() = Z(Sf) (ds (Sf ))

(11)

2m Z—

2.2. Highly Rolled-up Regions

To preserve the accuracy of the approximation in regions of
high curvature and regions of rapidly changing curvature, the
panel size is decreased in some proportion to these quantities.
To limit the total number of panels in regions where the vortex
sheet rolls-up into a tight spiral, 1.e., a vortex core, a model is
used to represent such a region, The model could be a vortex
patch (*“finite core method’’) or a line vortex, connected to the
end of the vortex sheet by a so-called “*feeding sheet’” as shown
in Fig. 2 for the case of a single-branched vortex. If at other
parts of the sheet the curvature increases above a critical value,
indicative for the formation of a double-branched vortex, a line
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vorlex is introduced which replaces the highly rolled-up part
of the vortex sheet. The line vortex is placed at the center of
vorticity of the cutoff portion of the vortex sheet, and the
circulation of the line vortex is equal to the circulation of the
cutoff part of the sheet. In both single- and double-branched
vortices the number of turns around the line vortex can be
resiricted to a user-specified angular extent while the rest of
the sheet is amalgamated with the line vortex. The contribution
of the line vortices to the velocity is given by

NV T
vi) = > - — (12)

A omizg—z

where NV denotes the number of line vortices. During the
vortex sheet roll-up, parts of the vortex sheet are stretched,
while other parts are compressed. As a result, the accuracy of
the calculated induced velocity becomes non-uniform along the
vortex sheet. In a similar way as has been proposed for the
redistribution of the point vortices in the discrete vortex ap-
proach [14], a curvature-dependent rediscretisation scheme is
used [12], which is governed by two parameters, namely a
maximum permissible panel size As,,, and a maximum permis-
sible angular extent Af,,/k, where k.. is the average curvature
of the panel. The parameter As,,, preserves the accuracy on
flat and mildly curved paris of the sheet. The parameter A6,
ensures that on a highly curved part of the sheet, the second-
order accuracy of the induced velocity is maintained by reduc-
ing the panel size As; in proportion to the magnitude of the cur-
vature.

2.3. Implementation of the Normal-Velocity
Boundary Condition

The condition of zero normal velocity at a solid boundary can
be satisfied exactly by mirror-imaging the sources and vortices
in the boundary. For simple geometries like an infinite wall or
a circle, this is a feasible approach. For some more complex
geometries it is possible to map the geometry in the physical
domain onto a simpier geometry in a computational domain
by a conformal transformation. In the computational domain
the method of images can then be applied, to exactly satisfy
the normal-velocity boundary condition on the imaginary axis.
For a polygon this is accomplished by the Schwarz—Christoffel
transformation of the polygon to a half plane (see Fig. 3). The
transformation from the physical plane z = x + iy to the
computational plane { = £ + in is given by z = f({), where

NE

FO=K[[¢- (13)
i=1

and the prime denotes the derivative with respect to ¢ while
the angle 3; is given in Fig. 3. The parameter X is a complex-
valued constant and the product is taken over ali edge points
(NE) of the polygon. While the derivative of the transformation

Schwarz-Christoffel
transformation

Z-plane
() (b)

{-plang

FIG. 3. Schwarz—Christoffe] transformation of the inside of a polygon
onto a semi-plane: (a) physical plane z = x + iy; (b) computational plane
=&+ in

function f({) can be found for any polygon, often the function
ft¢y itself and the inverse transformation cannot be obtained in
algebraic form.

When analytical solutions of the transformation function are
not available, numerical procedures to find the Schwarz—
Christoffel transformation function can be used [15].

Since the transformation is conformal, the complex potential
in the computational plane is equal to its value at the correspond-
ing position in the physical plane and if the normal velocity
boundary condition is satisfied in the computational plane, it
is also satisfied in the physical plane. The complex potential
is defined as ® = ¢ + iy, where ¢ and i are the velocity
potential and stream function, respectively. The complex poten-
tial is in the computational plane given by

wo-§ Ton(5)

F2m \p 4 iF (14)
- | & Q(S)
+ ;:21 Lj It In (———§+ gf.*(s)) dI'(s)

which consists of contributions of the continuous vortex sheet,
the line vortices, and the image vortex system. The velocity
v*(z) = (dP/dz){z) in the physical plane, at a point where the
velocity is not singular, can be obtained from the complex
velocity potential $(£) in the computational plane as

b av
d_z(z)_d{,“ (QIf' (). (15)

However, at the position of the line vortex, where the complex
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potential is singular, an additional term arises due to the trans-
formation, which is known as Routh’s correction [16]; e.g., the
velocity at a point 7 = z,, where a point vortex of circulation
I, is located, is

= (zu) = hm (d_g“ O+ 2 = g“u) TG+ -—f "))
\ﬁ—/
regular part of db/d{ Routh’s correction
(16)

with , the position of the line vortex in the {-plane.

The boundary conditions on a vortex sheet are that the vortex
sheet is a stream surface, i.e., J(v{z)(dz*/ds)) = 0 and that the
vortex sheet cannot sustain any forces, so that the pressure
difference across the sheet is zero, i.e., p(a¢/d1) + 1p|Ve|* is
identical on both sides of the sheet. Combining the two condi-
tions shows that the vorticity once generated at a sharp edge
is convected with the mean local flow velocity, or

dd)

de’ls) _ 2 @,

dt

dl'(s}
—=={. 17

U an
The velocity with which the vortex sheet convects in the compu-
tational plane is obtained from the complex velocity potential
@ and the transformation function f(£) as

di(s) _ dz(s) _ 1
dr dr f'({(s))

= (EE {¢(s )))

where the first derivative of the complex potential & in the
computational plane is obtained as described in Section 2.1,
In the computational plane, the line vortex is convected like

4 _ lim(dcb T, 1 )+
dr i\ d 2"7§ &

This implies that the first and second derivatives of the transfor-
mation function f({), not the function itself, are required to
calculate the convection of the vortex system in the computa-
tional plane.

The time dependent position of the vortex sheet is found by
integrating in time the convection velocity of the vortex sheet
panels and line vortices. Tn the vortex-sheet method the integra-
tion in time is performed by a first-order explicit Euler scheme,
with an adaptive timestep Ar. The time step is adapted by
restricting it such that each panel is displaced not more than a
fraction of its length.

2 (18)

_1_

iFuf"(s"u)}*
A (19)

an f (&)

2.4. Generation of Vorticity

In actual flows, due to the action of viscous forces, vorticity
is generated at solid boundaries. In a high-Reynolds-number
flow, the region with rotational flow is mostly limited to a thin
boundary layer along the solid boundary. However, at sharp
corners or on a strongly curved part of the wall, the boundary
layer can separate from the wall. The vorticity contained in the
boundary layer leaves the surface and a free shear layer is
formed. In any inviscid model of the flow separation and the
associated generation of vorticity is to be included explicitly
through a Kutta condition.'! The Kutta condition requires the
velocity to remain finite at sharp edges. Since the velocity is
given by Eq. (15) and since at sharp edges (£ = {;) the denvative
of the transformation function f'({) is zero, the Kutta condition
requires that

o

20
This implies that in the physical plane the flow must separate
at the edge with a finite velocity.

In an unsteady potential flow the Kutta condition cannot be
fulfilled in general without introducing vorticity in the flow.
The velocity induced by the shed vorticity removes the singular
behavior of the potential flow around the edge, and a finite
velocity at the edge remains.

The present computational procedure, implemented in the
computational ({—) plane, consists of six subsequent sub-steps.

1. Given the position {(s:f) and dipole strength I'(s;f) as a
function of the arc length s along the vortex sheet at time z,
cubic spline interpolations are set up based on values of { and
I' at discrete points s; for j € [, ..., NP + 1], where NP + |
is the number of discrete points.

2. A new panel distribution §; for j € [I, .., NP + 1]
with NP the number of panels is determined by an adaptive
curvature-dependent re-paneling scheme, aimed at preserving
the second-order accuracy in space of the panel method. Also,
if a strong variation of the transformation function z = f({)
occurs on a part of the vortex sheet, the panel size is reduced,
which limits the panel width in regions in the physical plane
strongly stretched by the Schwarz—Christoffel transformation,
i.e., near edges. In the adaptive scheme the panel size is further
limited to a maximum value As = min(As,., A /k,), where
£, is the average curvature of the panel and A8, is the maxi-
mum angle subtended by a single panel. The panel size in the
physical plane is also limited to As,,. The angular extent 8,
of the vortex sheet spiraling around the line vortex representing
the vortex core can be limited. The part of the vortex sheet
that exceeds the specified angular extent 6, is amalgamated
with the line vortex. In this amalgamation procedure, carried

‘Sometimes referred 10 as the Kutta—Joukowski condition.
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out in the physical plane, the center of vorticity of the line
vortex before amalgamation and the part of the vortex sheet
that has been cut off is conserved. The result at this sub-step
is that we have the position (35 ) and the dipole strength I'(5;;
1) for j € [1, ..., NP + 1] at the edge points of the individual
panels. Note that NP is not necessarily equal to NP; Le., the
number of panels is allowed to increase in response to the needs
of the adaptations.

3. The derivative of the complex potential at the panel mid-
points, i.e., {(§; 1 for j € [1, ..., NP], is computed using the
second-order panel method operating on the vortex sheet in the
computational plane. This complex velocity, computed from
Egs. (7) and (12) with z replaced by ¢ consists of the free
stream velocity, the velocity induced by the dipole panels and
the velocity induced by the line vortices. Substituting the deriva-
tive of the potential with respect to ¢ in the nght-hand side of
Eq. (19), the rate at which the position of the vortex sheet
advances in time is obtained. Similarly, the velocity at the line
vortex is used to compute the right-hand side of Eq. (19), which
Includes Routh’s correction.

The displacement of the beginning and ending points of the
vortex sheet are derived from a quadratic extrapolation of 4@/
d{, using the values at the first and last three midpoints on
the vortex sheet, respectively. However, if the edge point is
connected to the sharp edge, where the Kutta condition is to
be imposed, the extrapolation of the velocity is performed in
the physical plane, rather than in the computational plane. The
reason is the following. The Kutta condition, given by Eq. (20),
requires the derivative of the complex potential in the -plane
to be zero; however, it tends to zero in a non-polynomial fash-
ion, i.e., with the second derivative becoming infinite at the
edge. An accurate extrapolation requires knowledge on the
behaviour of ®({) near the edge. However, d@/dz on the vortex
sheet near the edge in the physical (z—) plane is finite; i.e.,
vorticity convects away from the edge with a finite and more
regularly behaving velocity, enabling a more accurate extrapo-
lation.

4. The new position of the midpoints of the panels, that of
the first and last edge points of the vortex sheet, and that of
the line vortices is found by application of the first-order Euler
scheme, e.g.,

{5+ A = 860+ R (gnan j=1. N QD

The convection procedure is illustrated in Fig. 4. The time step
in the Euler scheme, used for the convection of the panel
midpoints, the first and the last points of each vortex sheet,
and the line vertices, is adaptive, in that the time step At is
limited such that it does not exceed Ar,,, and simultaneocusly
such that none of the midpoints {(§; r) is displaced more than
a specified fraction &F of its own width in terms of the arc
length or more than a certain maximum displacement Ax,,, .
The parameters Axy,,, Aty.., and F are to be chosen such that

FIG. 4. Convection of the point vortices and the vortex sheet, only mid-
points and first and last edge points of the continuous vortex sheet segment
are cenvected. In case the vortex sheet is connected to the wall, at each time
step a new panel is introduced reconnecting the edge point and the first con-
vected edge point.

the accuracy of the time integration is preserved in time and
also such that it is in balance with the spatial accuracy.

5. The gap between the edge and the convected first peint
of the vortex sheet constitutes a new panel. The *‘bridging”’
panel is not necessarily directed tangentially to either side of
the sharp edge. The dipole strength I'(0; ¢ + A¢) at the edge is
determined from the application of the Kutta condition that in
the computational plane d®/dZ (£,) due to the vortex system
in its new position vanishes at the edge.

6. The location {(§; r + Ar) of the panel edge points at time
t + At is computed by a quadratic spline, fitted through the
location {(5; + + Ar) of the panel midpoints at time ¢t + At
The value of the dipole strength I'(§;; + + Af) at time ¢ + At
at the panel edge points equals the value at time £; i.e., the
dipole strength is convected with the sheet.

This completes one cycle of the computational procedure.
Steps 1| through 6 are repeated until the specific number of
timesteps has been carried out or unti! a panel becomes smaller
than a given minimum length.

3. APPLICATIONS

3.1. Starting Flow Past a Wedge

As a first application of the method the impulsively started
flow around an infinite wedge is considered. The flow separates
at the sharp edge of the wedge and the vorticity generated at
the edge convects with the local flow velocity away from the
edge into the flow field. For the high Reynolds number consid-
ered, the vorticity remains concentrated in a relatively thin free
shear layer emanating from the edge, across which a rapid
variation in tangential velocity takes place. Further away from
the edge the free shear layer rolls up into a vortical core. Within
the core the vorticity is spatially distributed in & smooth fashion
with a maximum at the center of the vortex core. In the core,
the individual turns of the spiraling free shear layer cannot be
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FIG.5. Schwarz Christoffel rransformation of a wedge: (a) physical plane
7 = & + {y; (b) computational plane { = £ + in.

identified anymore. In the potential-flow model of the flow the
shear layer is assumed to be infinitesimally thin with all the
vorticity contained in this vortex sheet.

Because there is no length or time scale involved the resuiting
potential flow problem has a self-similar solution in which the
shape and strength of the vortex sheet are stationary in terms
of self-similar variables [17]. However, the computational
method is applied in the time-domain and the methed is vali-
dated by checking whether for large times the self-similar solu-
tion is attained.

By conformal transformation the flow domain in the physical
plane z = x + iy is mapped onto a half-plane £ > 0 in the
computational plane { = £ -+ in (see Fig. 5). The mapping is
given by z = f({), where

O = oy {22)

with
n=ml2r — &

and D is a complex constant while the value of » is determined
by the included angle # of the wedge and varies between n =
0.5, for the included angle 6 = 0 (flat plate} and » = 1 for
& = m (smooth wall).

The attached potential flow around the edge is described by
the complex potential

Dy({) = AL, (23)
where A is a real constant.

In case the flow separates at the edge the velocity potential
at a point ¢ in the computational plane is a superposition of
the onset flow ®({) given by Eq. (23) and the flow induced
by the vortex sheet ®y({); lL.e.,

! f ¥(s)ln (5;5‘(—5))51&

DD =—
1 2mi {+ 8s)

(24)

where y(s) = —d1'/ds is the vortex distribution and the integra-
tion is along the vortex sheet { = {(s), with 5, — . Note
that the boundary condition on the surface of the wedge in the
computational plane (£ = 0) is satisfied by mirror-imaging the
voriex system in the positive half-plane into the vertical plane.
The circulation along the sheet is defined as the jump in the
value of the velocity potential across the sheet. At a point s of
the sheet it can be determined from

S
I(s) = - j Y(s*)ds*, 25)

where the integral is taken from the point s on the sheet to the
endpoint of the rolled-up vortex sheet. The circulation contained
within the vortex sheet is ['(0), which corresponds to the value
of the dipole strength at s = 0, i.e., the location where the sheet
1s connected to the edge of the wedge.

The velocity at a point z in the physical plane is given by
Eq. (15) applied to the complex potential ®(§) = () +
D). Using Egs. (22), (23), and (24) we obtain

dP
(Fz’) (2

I LSM 1 _ 1 lin 1= Lin
—[ “‘”zm! ”(”(g—a(s) ::+£.:'=(s))d‘]”D o

(26)

where the integral 1s taken over the whole vortex sheet.

To obtain the velocity at a point £ = £, on the vortex sheet
the Cauchy principal value of the integral in Eq. (26) should
be taken,

The Kutta condition requires that the singular behavior of
the velocity field due to ®y{{) at the edge { = 0 is compensated
by the velocity induced by the vortex sheet (see Eq. (20)).
Using Eq. (26) one finds

_ 1Y 1 1
A5 j 7 (g(s) . {.:*(s)) . @7

TABLE I

Parameters Used for the Application of the Vortex-Sheet Method o
the Starting Flow around a Wedge with # = 90° (see Fig. 6)

Time step B NSy Al 0,
1-250 0.2 0.05 15° 180°
251-350 0.2 0.10 200 1620°
351-350 0.2 0.05 15° 16209
551-3550 0.2 0.04 15° 1620°
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FIG. 6. Impulsively started flow around a 90° infinite wedge, Development of the vortex sheet computed in the time domain with the vortex-sheet method.
The vortex sheet geometry is given in similarity coordinates w{A). The time-invariant similarity solution is obtained at t = 2.5.

The time-scaled similarity variables are related to the coordi-
nates and the circulation of the vortex sheet [17] as

7= {2 — n)}(1 — MADH " m(A)
I'{0) = ({2 — a)(1 = mpy@=(ADY*™"J, (28)
respectively. Here w(A) = p(A) e* and J are the self-similarity
coordinates and the scaied circulation, respectively. The param-

eter A is one minus the scaled circulation along the vortex sheet
and it is zero at the edge and one at the end of the vortex sheet.
If I'(s} is a monotone function of the arc length s along the
vortex sheet, A can be used as an independent variable along
the vortex sheet,

I

ASY=1- TO)

(29)
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Impulsively started flow around a 90° infinite wedge. Vortex position @, = p, ™, center of vOrticity wee.. = proy. €%, line vortex strength J, and

circulation J, in similasity variables, converge 1o a time-invariant self-similar solution. The single vortex solution wy = py €™, J, [18], given by Eq. (30) with

n=3%uand A =2, is used as a start for the iteration procedure.

Equations (17), {26), and (27) rewritten in terms of similarity
variables form a single, time-independent system of nonlinear
equations, which has to be solved iteratively. Pullin {17] solved
the problem of the starting flow around a wedge formulated in
the similarity variables numerically employing a Newton—
Raphsen scheme. He discretised the portion of the vortex sheet
attached to the edge by a number (75) of segments. The rolled-
up part of the vortex sheet is represented by a line vortex, The
method requires an initial solution from which the iterative
procedure is started. To this purpose the single-vortex solution
[18]) is utilized, in which the vortex sheet is omitted. This
solution gives the vortex position z, = p,e% and vortex strength
J as

142—n)
P = (n\/ 1 — 1/{dn) A)

1 1
X = - arc cos (m> 30

J= 277\/:;p{j ,

where the value of A depends on the type of condition imposed
on the vortex system [ 19]. The ““force free”” condition, proposed
by Brown and Michael [20], corresponds to the value of A =
1/{n+ 1)

Pullin [17] started the solution of the problem by first
considering the flow around a semi-infinite flat plate (n =
3). The streakline of the flow emanating from the edge is
taken as the initial position of the vortex sheet which is
iteratively improved upon. Subsequently the solution for the
flat plate was used as an initial guess for the solution of
the flow around wedges with nonzero included angle (3 <
rn < 1). For a low past a wedge with intericr angle of 90°
(n = % Pullin [17] obtained for the circulation the value
J = 253 and for the scaled position of the core vortex,
w, = pe* p, = 054, and y, = 98°. The circulation of
the line vortex representing the vortex core took the value
J, = 1.09.

In the present method the vortex sheet is divided into NP
panels while the highly rolled-up part of the vortex sheet is
represented by a line vortex. The complex potential at a point
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¢ in the computational plane due to the line vortex at position
£, and the mirror imaged vortex at {= —{F is given by

D =L°.In (—"{——é’") 31
2mi §+ g;k
where T, is the circulation of the line vortex.

The complex potential is now given by summing all the con-
tributions,

D) = DD + DD + (D, (32)
where ®y(£) is the attached flow component given by Eq. (23),
@ ({) is the potential due to the continuous parts of the vortex
sheet, Eq. (24), and ®,({) is the potential due to the line vortices,
Eq. (31).

The initial solution, for ¢ = ¢, is formed by the line
vortex at the location given by Eq. (30) with n = 4 A =
2 and a fat vortex sheet segment of constant dipole strength
I'(s) = J situated along the extension of the bisector of the
wedge. The vortex sheet, discretised into five panels, starts
to convect with the flow and to gain in circulation through
the new vorticity introduced by the application of the Kutta
condition at the edge.

The resulis of this simulation in the time domain will be
presented in terms of the similarity variables @(A) and J for
the position of the vortex sysiem and its circulation, respec-
tively. The parameters used for the vortex-sheet calculation
are given in Table 1. Proceeding in time a time-ipvariant
similarity solution is reached (see Fig. 6). Following the
initial stage with a smaller fixed angle 4,, a number of time
steps have been performed with a larger value of As,, and
@y, in order to damp out spurious initial disturbances in
the vortex sheet geometry. In Fig. 7 the vortex position and
strength are given as a function of time. For ¢ = ¢, = 0.1
the values are given by the single vortex solution, Eq. (30).
Clearly, for the time-invariant solution, the position of the
center of vorticity differs significantly from the point vortex
position, both in terms of the distance to the edge and the
angle. Comparing the converged solutton with the results
obtained by Pullin [17] we observe only slight differences.
The present solution for the position of the core vortex is
gy = 052 and w, = 96.6°, while the circulation of the
vortex system is J = 2.38 and that of the line vortex is J,
= 1.12. The results differ less than 4% from the results
obtained by Pullin [17). Results obtained for the starting
flow past a flat plate (# = 0°, n = %) are even in closer
agreement with the results found by Pullin [17] and are
reported by Peters [19].

Figure 8 presents for the solution at 1+ = 2.5 the position
of the vortex sheet in the computational and physical planes.
Figure 8 also pives the dipole distribution and the first and
second derivatives of the dipole distribution along the sheet

Schwarz-Christoffel
transformation

Z-plane L-plane

(&) {b)

FIG. 9. Conformal mapping of region within a T-juncticn to a half plane.

with respect to the arc length s and the curvature of the
sheet, all in the physical plane. At the edge the direction
of the first derivative of the position vector corresponds with
the tangent along the lower side of the wedge. Note that
this is not explicitly imposed in the present numerical scheme.
Application of the Kutta condition results in a vortex sheet
leaving the wedge tangentially. Regions of high curvature
k, correspond with regions of high values of the vortex
strength 7(s). Figure 8 shows that even in the tightly rolled-
up region the vortex sheet appears to keep an elliptical shape,
since the value of k(s) keeps oscillating even close to the
vortex core.

At the edge the curvature shows a singular behavior; it
tends to Infinity at the edge. The singular behavior of the
vortex sheet near the edge has already been hypothesized
121, 22}, proposing that the vortex sheet near the edge should
behave as y, = Cx2?, where x, and y, are coordinates parailel
and normal to the lower side of the wedge, respectively.
The present vortex-sheet solution appears to confirm the
singular behavior.

3.2. Starting Flow in a T-Junction

In order to assess the applicability of the method to flows
in pipe systems, we consider the inviscid, incompressible start-
ing flow in a channel with a two-dimensional T-junction be-
tween a main pipe of width 7 and a deep cavity. The T-junction
has sharp edges and the width of the side branch is H (see Fig.
9). Since the side branch is closed, the volume flux, per unit
length in the third dimension, is directed through the main pipe.
The coordinate z, the volume flux ¢ = Ugh, time ¢, circulation
I', the main pipe width #, and the complex velocity potential
are non-dimensionalised with U, and H according to

z= z*H,
Q = Q*[](]Hs
I'=T*U;H, &= o*U,H.

t = t*H/U,

h = h*H (33)
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In the sequel the non-dimensionalised quantities will be used
and the asterisk will be omitted. For the purpose of easily
satisfying the boundary conditions on the solid walls the inner
part of the T-junction in the physical plane (z = x + iy) is
mapped to the half plane H() > 0 in the computational plane
(£ = £ + i) as shown in Fig. 9. This is accomplished by the
conformal mapping z = f{{) with

rip=23E"]

7 +add 34

where @ = 1/V1 + 4k* < 1. The transformation is obtained
from Eq. (34) by integration as

x/H

Impulsively started flow in a T-junction computed with the vertex-sheet method.

f(§)=%+ih+7—iln(i§+ \/TE—_T)*%ln (—ﬁ—‘f*‘*)

il +a

24, (\/(1 —a)il — )+ iV + a)il + 1'))

T\ +a)ie — )+ iV —a)id+ 1)
(35)

The upstream and downstream edges of the T-junction are
mapped onto £ = —i and { = i, respectively., Upstream infinity
(x = =) is mapped onto { = —ia; downstream infinity (x =
—o0) is mapped onto { = fa. The uniform flow at infinity, with
velocity Uy is generated by a point source of strength ¢ = 2k
at ¢ = —ia and a sink of equal strength at ¢ = ia. The dotied
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line in Fig. 9 indicates the intersection between the side branch
and the main pipe, both in the computational plane as well as
in the physical plane. The complex potential due to the attached
main flow is given by

_h ¢+ ia
D = 7Tln (§ ia)'

(36)

As a result of the action of viscosity the flow separates at the

sharp upstream edge and vorticity is generated continuously at
the edge and convected into the flow field. At the downstream
sharp edge it has been observed by means of flow visualization
that separation does not take place or is of limited extent [19].
Therefore in the numerical simulations only flow separation at
the upstream edge is taken into account.

For the initial stage of the development of the flow, when
the separated flow region is still small compared 1o the side
branch width #, the position of the tightly rolled-up vortex
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TABLE II

Parameters Used for the Application of the Vortex-Sheet Method to
the Starting Flow in a T-Junction (see Fig. 10)

Time step Ry A Al d,
1-250 0.2 0.01 20° 225°
251-300 0.2 .02 20° 360°
501-1000 0.3 (.05 ur 340°
10014000 0.3 0.05 20° 900°

sheet and its circulation can be estimated by a self-similar
solution of the flow past an infinite wedge with the interior
angle equal to the included angle of the upstream edge, ie.,
8 = 90°. Near the upstream edge (z = § + ih, { = —i) the
transformation function given in Eq. (35) can be approxi-
mated by

2V2h . .
_lﬁ'h:— i +-3f3 37
=31 37r(1—a2}( P+ (37)
and the expression for the attached-flow velocily potential

(36) to

2iah

[(AN 3] e ——————
. (1l — a?)

(++---. (33)

The self-similar problem of a starting flow past the wedge can
be defined according to Egs. (22) and (23) with parameters

3n(l — .ﬁ)m —2ah
D=|"—="2)  a=—"""_
( 2V (1 — a?)

The single-vortex self-similar solution for the flow is given by
Eqgs. (28) and (30) withr =fand A = &
For the vortex-sheet method, the single-point-vortex solution

(39)
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FIG.12.  Main flow velocity in the T-junction: {————} velocity correspond-

ing to maximum pressure difference Ap = 50 Pa (
degree polynomial fit.

) least squares fifth-
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determines the initial position of the core vortex and its initial
strength. In the following we take i = | so that a = V173,
which corresponds to the case that the main pipe and the side
branch have equal widths.

To start off the vortex-sheet method, five panels with a con-
stant circulation I'(s) = I', distribution are attached to the
upstream edge along a streakline of the flow. The vortex sheet
starts to increase in length and to wind around the point vortex.
During the calculation the angular extent of the vortex sheet
is limited to a maximum angle #,. The adaptive re-panelling
scheme is used during the calculation.

The time step is determiped by allowing a maximum dis-
placement of a fraction & of each individual panel width. In
addition the derivative of the transformation function is not
allowed to vary more than 20% on each individual panel.

Figure 10 presents the computed results of the impulsively
started flow in a T-junction for 0 < tUy/H < 3.5, During this
period the vortex sheet grows continuously and reaches the
downstream edge. The parameters used for the computation
are given in Table 1I. When the vortex sheet hits the downstream
edge the vortex sheet splits into two parts; one convects into
the side branch, the other convects into the main pipe. For 11/y/
H = 15 and tUy/H = 2.5 the characteristics of the solution
are shown in Fig. 11. At tUy/H = 1.5, the vortex distribution
is quite regular, with a local maximum value of the vortex
distributien corresponding with a local maximum of the curva-
ture of the sheet. This point is indicated by (1) in Fig, 11
Furthermore, again the vortex sheet leaves the upstream edge
tangentially, while the curvature at the edge is infinite, similar
to the case of a separated flow around an infinite 90°-wedge.
At fUy/H = 2.5, when the vortex sheet nearly hits the down-
stream edge, the vortex distribution has a peak value at the
point of the sheet closest to the downstream edge, while also
the curvature has a maximum value at that point (indicated by
(1) in Fig. 11). At tUy/H = 3.5, due to the Kelvin—Helmholtz
instability of the straight vortex sheet, vorticity starts to concen-
trate into rolled-up regions. The wavenumber of this instability
is determined by the chosen value of the parameter Asy, of
the numerical scheme [13, 19].

3.3. Experiment
3.3.1. Flow Visualization

To verify the numerical results of the convection and the
roll-up of the vortex sheet an experimental setup has been built
to visualize the starting flow in a T-junction. The T-junction
eonsists of square brass pipes of 3.0-cm width, The cavity has
a depth of 6.0 cm, which is twice the side branch width. For
visualization purposes, part of the side walls of the T-junction
are glass windows.

A pressure difference over the system is obtained by
decreasing the pressurc in the laboratory with the help of
the ventilation system of the building. The room in which
the experiment has been carried cut has a volume of 40 m’,
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while the laboratory building which is used as a high-pressure
supply has a volume of 3600 m’ The pressure difference
used for the present How visualisation is 50 Pa. This pressure
difference Ap is measured within 2-Pa accuracy by means
of a Betz water manometer.

The high pressure room is connected to the main pipe by
a contraction which yields a uniform velocity distribution in
the upstream part of the main pipe. The operating pressure
duoring the experiments was close to atmospheric pressure
and the temperature close to room temperature (295 K). A
standard schlieren method was used to visualize the flow.
By injecting CO, in the side branch a refractive index
variation is created across the shear layer enabling its visual-
ization. Prior to each experiment the cavity was filled with
CO;. Therefore, in the schlieren pictures a contact line is
observed between the gas originally inside the cavity and
the air in the main pipe. The contact line contains no vorticity.
A nanolite spark discharge provides a light pulse of about
80-na duration. In order to obtain a visualization at a well-
defined point in time, the nanolite light source can be triggered
by a hot wire anemometer, placed just upstream of the side
branch. With the hot wire anemometer, the development in
time of the main flow velocity is measured after opening
the valve. The rise in the velocity with time since the opening
of the valve (within approximately 1 ms) is given in Fig.
12. The maximum attainable velocity is equal to the Bernoulli
velocity; ie., Uy, = V2Ap/p,, with Ap as the initial pressure
difference across the valve.

Figure 13* shows results of the flow visualization of the
starting flow in the T-junction for three moments in time for
Ap = 50 Pa. Separation of the flow at the upstream edge causes
the formation of a vortex layer. Right at the beginning of the
motion, the vortex layer rolls up and the shear layer with its
vortical structure convects with the local flow velocity in the
direction of the downstream edge.

Upon reaching the opposite edge, part of the vortex layer is
forced into the side branch. Under influence of a Kelvin—
Helmbholtz-like instability the not yet rolled-up part of the vortex
sheet in the T-junction starts to distort and, at times later than
shown in Fig. 13, roils up into secondary vortices. The instabil-
ity of the vortex layer is more pronounced when the experiment
is performed at a higher pressure difference than 50 Pa which
results in an increased strength of the shear layer of smaller
thickness {shorter times) [19].

Using a fifth-degree fit of the measured velocity rise (see
Fig. 12}, a calculation has been performed with the vortex-
sheet method. In the numerical simulation, passive tracer
particles have been introduced which initially are located at
the intersection of the main pipe and the side branch. The
tracer particles move with the local flow velocity and corre-
spond directly to the contact line visible in the flow visualisa-
tion (see Fig. 13). '

The results of the vortex-sheet method at moments in time
corresponding to the time of visualisation are presented in
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Fig. 13". The solution obtained with the vortex-sheet method
is in fair agreement with the results of the flow visualizatton.
Differences are probably due to the relatively low value of
the Reynolds number in the experiment Re =~ 2000.

4, CONCLUSIONS

The second-order vortex sheet method proposed by Hoeij-
makers and Vaatstra [12] has been extended to describe the
generation of vorticity at sharp edges. This has been accom-
plished by introducing the Kutta condition at sharp edges and
a conformal mapping of the flow to a half-plane. The latter
facilitates the use of symmetry conditions to exactly satisfy the
stream surface condition on solid surfaces. The method has
been applied to simulate in the time domain the starting flow
past a semi-infinite wedge and the impulsively started flow in
a T-junction. For the first application, a comparison with the
time-invariant self-similar solution obtained by Pullin [17]
shows a good agreement between the self-similar solution and
the present resolts for long times. Although the vortex sheet
separates from the solid edge tangentially, the curvature of the
vortex sheet iends to infinity at the sharp edge.

The second application of the method shows that the
method is able to simulate the internal flow m a T-junction
accurately, where the separating flow at the upstream edge
also leaves the edge tangentially. When the vortex sheet
collides with the downstream edge, a Kelvin—-Helmholtz
instability of the remaining part of the vortex sheet is
triggered. A companison of the results of the vortex-sheet
method with flow visvalisation of the starting flow in a T-
junction shows a fair agreement.
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